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Abstract

This paper is concerned with the problem of designing robust static output feedback controllers for linear discrete-time systems with time-
varying polytopic uncertainties. Sufficient conditions for robust static output feedback stabilizing controller designs are given in terms of
solutions to a set of linear matrix inequalities, and the results are extended to H2 and H∞ static output feedback controller designs. Numerical
examples are given to illustrate the effectiveness of the proposed design methods.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Robust control problems for linear systems with polytopic
uncertainties have been extensively studied in the past decades,
and many important results have been obtained. A popular ap-
proach to solve this problem is Lyapunov approach. In [3,10],
a single quadratic Lyapunov function approach is used for the
analysis and synthesis of linear uncertain systems. However,
the obtained results might be conservative. This is due to the
fact that the same Lyapunov function is used to assure the
robust stability of the system for the entire uncertainty do-
main. In order to overcome this conservativeness, parameter
dependent Lyapunov function methods have been proposed in
[8,6,17,19,1,11,21,7,4,20,14,12,2]. In particular, the methods
to separate Lyapunov matrix with system matrix by adding a
slack variable are noticeable, in [17,19,1,11], respectively, for
discrete- and continuous-time systems. By simple modifications
to the standard Linear matrix inequality (LMI) which appears
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in the continuous-time bounded real lemma (BRL), an H∞
controller design method is proposed for continuous linear
systems with time-invariant uncertainties in [21]. Further, for
linear systems with time-varying parametric uncertainties,
methods of introducing multi-slack variables are developed
in [7,4], respectively, for discrete-time and continuous case.
Moreover, robust D-stability problems are considered in
[20,14], and filter designs are studied in [12,2]. However, the
above-mentioned controller design methods of linear uncer-
tain systems are based on the assumption of the states are
available for controller implementation, which is not true in
many practical cases. When the states of a system are not
available, an output feedback control design is necessary. In
recent years, there have been some results for output feedback
control designs [15,5,22,13,16,18].

Among them, static output feedback control is very use-
ful and more realistic, since it can be easily implemented
with low cost. Recently, static output feedback control for
linear uncertain systems has been investigated by many re-
searchers see [5,22,13,16,18] and the references therein. In
[5], LMI conditions for solving static output feedback control
problem of linear continuous- and discrete-time systems are
given. A linear parameter dependent approach for designing
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static output feedback controllers [22] is proposed for a lin-
ear continuous-time system with H2 or H∞ performance re-
quirements, and the results are extended to discrete-time linear
systems that contain stochastic white-noise parameter uncer-
tainties in [13]. In [16], a two-step method for designing static
or dynamic output feedback controllers is given, where the first
step is to obtain a state feedback controller gain whereas the
second one is to obtain a static output feedback controller gain.
By introducing a parameter-independent slack variable with
sub-triangle structure, an LMI-based method of designing ro-
bust static output feedback controller for linear systems with
time-invariant uncertainties is proposed in [18]. These meth-
ods are concerned with designing static output feedback con-
trollers for linear systems with time-invariant uncertainties, and
are applicable for the time-varying case when a single quadratic
Lyapunov function is exploited. However, the design methods
given by [5,22,13,18] require that the system output matrix or
input matrix is fixed, i.e., without uncertainties. Although the
method of [16] is applicable for the system output matrix and
input matrix simultaneously with uncertainties, its design is de-
pendent on the obtained state feedback controller gain in the
first step. For the case that the considered system output ma-
trix and input matrix simultaneously are with time-varying un-
certainties, few convex methods have been proposed to design
robust static output feedback controllers in the literatures.

On the other hand, the approach to separate system ma-
trix and Lyapunov matrix by introducing slack variables has
been extensively applied for designing state feedback con-
trollers for linear systems with polytopic uncertainties, and
less conservative controller design conditions are obtained, see
[17,19,1,11,21,7,4,20,14,12,2]. In this paper, the approach is
extended for static output feedback controller designs of linear
systems with time-varying uncertainties and new sufficient con-
ditions for static output feedback controller designs are given
in terms of solutions to a set of linear matrix inequalities. In
contrast to existing approaches, a parameter-dependent slack
variable with lower-triangular structure is introduced by consid-
ering the properties of input or output matrices, which is helpful
for obtaining less conservative results. Moreover, the new tech-
nique is also applicable for linear systems with the time-varying
polytopic uncertainties, which may simultaneously emerge on
system output and input matrices.

The paper is organized as follows. In the next section, system
description and some preliminaries are given. In Section 3,
sufficient conditions for designing robust static output feedback
controllers are proposed, and the results are extended to H2
and H∞ static output feedback controller designs. Section 4
presents numerical examples to illustrate the effectiveness of
the proposed design methods. Finally, Section 5 concludes the
paper.

Notation: The symbol ∗ within a matrix represents the sym-
metric entries.

2. System description and preliminaries

Consider a linear discrete-time system (1) with time-varying
polytopic uncertainties described by the following state-space

equations:

x(k + 1) = A(�(k))x(k) + B1(�(k))w(k) + B2(�(k))u(k),

z(k) = C1(�(k))x(k) + D11(�(k))w(k) + D12(�(k))u(k),

y(k) = C2(�(k))x(k), (1)

where x(k) ∈ Rn is the state vector, w(k) ∈ Rm is the dis-
turbance input, u(k) ∈ Rp is the control input, y(k) ∈ Rr

is the measured output, z(k) ∈ Rq is the controlled output.
�(k) = [�1(k), �2(k), . . . , �N(k)]T ∈ RN is an unknown but
bounded time-varying parameter, satisfying

�i (k)�0,

N∑
i=1

�i (k) = 1

and

A(�(k)) =
N∑

i=1

�i (k)Ai, B1(�(k)) =
N∑

i=1

�i (k)B1i ,

B2(�(k)) =
N∑

i=1

�i (k)B2i ,

C1(�(k)) =
N∑

i=1

�i (k)C1i , C2(�(k)) =
N∑

i=1

�i (k)C2i ,

D11(�(k)) =
N∑

i=1

�i (k)D11i , D12(�(k)) =
N∑

i=1

�i (k)D12i .

The matrices Ai ∈ Rn×n, B1i ∈ Rn×m, B2i ∈ Rn×p, C1i ∈
Rq×n, C2i ∈ Rr×n, D11i ∈ Rq×m and D12i ∈ Rq×p, 1� i�N .

The problem under consideration in this paper is to design a
static output feedback controller

u(k) = Ky(k), (2)

such that the resulting closed-loop system

x(k + 1) = (A(�(k)) + B2(�(k))KC2(�(k)))x(k)

+ B1(�(k))w(k),

z(k) = (C1(�(k)) + D12(�(k))KC2(�(k)))x(k)

+ D11(�(k))w(k) (3)

is robustly stable or satisfies H2 (or H∞) performance require-
ments.

Definition 1 (Barbosa et al. [2]). (i) Suppose that system (1) is
asymptotically stable. The H2 norm of system (1) is defined by

lim
N−→∞ E

{
1

N

N∑
k=1

zT(k)z(k)

}

when x(0) = 0 and w(k) is a zero-mean white noise with an
identity covariance matrix, where in the above E denotes math-
ematical expectation.
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(ii) (Daafouz and Bernussou [6]). Suppose that system (1) is
asymptotically stable and for all w(k) ∈ Rm, satisfies

∞∑
i=0

zT(k)z(k) < �2
∞∑
i=0

wT(k)w(k)

for all
∞∑
i=0

wT(k)w(k) > 0 (4)

then H∞ norm of system (1) is said to be less than �.

The following two lemmas will be used in the sequel.

Lemma 1 (Barbosa et al. [2]). (H2 performance). If there exist
symmetric matrices P(�(k)) and Z(�(k + 1)), such that

trace(Z(�(k + 1)))��, (5)⎡
⎢⎣

−P(�(k)) ∗ ∗
P(�(k + 1))(A(�(k)) + B2(�(k))KC2(�(k))) −P(�(k + 1)) ∗

C1(�(k)) + D12(�(k))KC2(�(k)) 0 −I

⎤
⎥⎦< 0, (6)

⎡
⎢⎣

−Z(�(k + 1)) ∗ ∗
P(�(k + 1))B1(�(k)) −P(�(k + 1)) ∗
D11(�(k)) 0 −I

⎤
⎥⎦< 0 (7)

then H2 norm of system (1) is less thans
√

�.

Lemma 2 (H∞ performance). If there exists a symmetric ma-
trix P(�(k)), such that⎡
⎢⎢⎢⎢⎣

−P(�(k)) ∗ ∗ ∗
0 −�I ∗ ∗
�1 �2 −P(�(k + 1)) ∗
�3 D11(�(k)) 0 −�I

⎤
⎥⎥⎥⎥⎦< 0, (8)

where

�1 = P(�(k + 1))(A(�(k)) + B2(�(k))KC2(�(k))),

�2 = P(�(k + 1))B1(�(k)),

�3 = C1(�(k)) + D12(�(k))KC2(�(k))

then H∞ norm of system (1) is less than �.

Proof. Let the initial state x(0)=0. Choose Lyapunov function
V (k) = xT(k) P (�(k))x(k). From (8), we have[ −P(�(k)) ∗

P(�(k + 1))(A(�(k)) + B2(�(k))KC2(�(k))) −P(�(k + 1))

]
< 0

then system (1) with w(k) = 0 is asymptotically stable.
Consider

V (k + 1) − V (k) + 1

�
zT(k)z(k) − �wT(k)w(k)

= [xT(k) wT(k)]
[�11 ∗
�21 �22

] [
x(k)

w(k)

]
, (9)

where

�11 = (A(�(k)) + B2(�(k))KC2(�(k)))TP(�(k + 1))

× (A(�(k)) + B2(�(k))KC2(�(k))) − P(�(k))

+ 1

�
(C1(�(k)) + D12(�(k))KC2(�(k)))T

× (C1(�(k)) + D12(�(k))KC2(�(k))),

�21 = BT
1 (�(k))P (�(k + 1))(A(�(k)) + B2(�(k))KC2(�(k)))

+ 1

�
DT

11(�(k))(C1(�(k)) + D12(�(k))KC2(�(k))),

�22 = BT
1 (�(k))P (�(k))B1(�(k))

+ 1

�
DT

11(�(k))D11(�(k)) − �I .

Applying Schur complement lemma to (8), we have[�11 ∗
�21 �22

]
< 0

which can guarantee that (9) is less than zero, for
[

x(k)
w(k)

]
�= 0.

Then

∞∑
k=0

[(
V (k + 1) − V (k) + 1

�
zT(k)z(k) − �wT(k)w(k)

)]

= V (∞) − V (0) +
∞∑

k=0

1

�
zT(k)z(k) −

∞∑
k=0

�wT(k)w(k)

= V (∞) +
∞∑

k=0

1

�
zT(k)z(k) −

∞∑
k=0

�wT(k)w(k)

< 0 for
∞∑
i=0

wT(k)w(k) > 0,

where V (∞) = limk→∞V (k). Since V (∞)�0, the above in-
equality implies that (4) holds. Therefore, the H∞ norm of
system (3) is less than �. �

3. Robust static output feedback controller design

In this section, two methods for designing robust static output
feedback controllers are given, respectively, for two cases. The
first case is that C2i , 1� i�N , are of full rank, and the second
one is that B2i , 1� i�N , are of full rank.
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3.1. Case I: C2i is of full rank

In this subsection, assume that C2i , 1� i�N , are of
full rank, and let invertible matrices Ti , 1� i�N , satisfy

C2iTi = [I 0] for 1� i�N . (10)

Under the assumption, a method for designing robust static
output feedback stabilizing controllers is firstly given, and then
followed by extensions to H2 and H∞ controller designs.

Remark 1. For each C2i , the corresponding Ti generally is not
unique. A special Ti can be obtained by the following formula:

Ti = [CT
2i (C2iC

T
2i )

−1 C⊥
2i], (11)

where C⊥
2i denotes an orthogonal basis for the null space of C2i .

3.1.1. Robust stabilizing controller design
The following lemma is essential to the later development.

Lemma 3. If there exist symmetric matrices Qi , 1� i�N and
matrices Sij , 1� i, j �N , satisfying (12a) (or (12b)),[

Qi − Sij − ST
ij ∗

(Ai + B2jKC2i )Sij −Ql

]
< 0, 1� i, j, l�N , (12a)

[
Qi − Sij − ST

ij ∗
(Ai + B2iKC2j )Sij −Ql

]
< 0, 1� i, j, l�N . (12b)

then system (3) with w(k)=0 is robustly stable via static output
feedback control law (2).

Proof. By (12a) and considering the block (2, 2) of the left
side of (12a), then we have Qi > 0. From the block (1, 1) of the
left side of (12a), it follows that Qi −Sij −ST

ij < 0. Combining

it with Qi > 0, we can obtain Sij + ST
ij > 0, which implies that

Sij is invertible. From Qi > 0, then we have

(Sij − Qi)
TQ−1

i (Sij − Qi)�0

which is equivalent to

−ST
ijQ

−1
i Sij �Qi − Sij − ST

ij . (13)

From (12a) and (13), it follows that[ −ST
ijQ

−1
i Sij ∗

(Ai + B2jKC2i )Sij −Ql

]
< 0, 1� i, j, l�N . (14)

Let Pi = Q−1
i , 1� i�N . Pre- and post-multiplying (14) by[

(S−1
ij )T 0

0 Pl

]

and its transpose, then we have[ −Pi ∗
Pl(Ai + B2jKC2i ) −Pl

]
< 0, 1� i, j, l�N . (15)

Multiplying (15) by �i (k)�j (k)�l (k + 1), and summing them,
then it follows that⎡

⎢⎢⎢⎢⎣
−

N∑
i=1

�iPi ∗
(

N∑
l=1

�lPl

)(
N∑

i=1
�iAi

)
+
(

N∑
l=1

�lPl

)(
N∑

j=1
�j B2j

)
K

(
N∑

i=1
�iC2i

)
−

N∑
l=1

�lPl

⎤
⎥⎥⎥⎥⎦< 0, (16)

where �i = �i (k), �j = �j (k), �l = �l (k + 1).
If we choose a parameter dependent Lyapunov function

V (k) = xT(k)

(
N∑

i=1

�i (k)Pi

)
x(k)

then from (16), we have V (k + 1) − V (k) < 0 for x(k) �= 0,
which implies that system (3) is asymptotically stable. More-
over, by replacing inequality (12a) with (12b), the correspond-
ing proof is easily obtained and omitted. �

Remark 2. If K = 0 and Sij = Si , then (12) becomes[
Qi − Si − ST

i ∗
AiSi −Ql

]
< 0, 1� i, l�N , (17)

which reduces to the robust stability condition given in [7].
In particular, for the following parameter dependent Lyapunov
function:

V (x(k), �(k)) = xT(k)

(
N∑

i=1

�i (k)Q−1
i

)
x(k).

Eq. (17) is a necessary and sufficient condition to make sys-
tem (1) with u(k) = 0 and w(k) = 0 robustly stable, see
[7, Theorem 3].

Based on Lemma 3, we have the following result for robust
static output feedback stabilizing controller designs.

Theorem 1. If there exist symmetric matrices Qi , 1� i�N

and matrices Sij , L, 1� i, j �N with

Sij =
[
S11 0

S
ij
21 S

ij
22

]
, L = [L1 0]

satisfying (18a) (or (18b)),[
Qi − TiSij − ST

ij T
T
i ∗

AiTiSij + B2jL −Ql

]
< 0, 1� i, j, l�N , (18a)

[
Qi − Tj Sij − ST

ij T
T
j ∗

AiTj Sij + B2iL −Ql

]
< 0, 1� i, j, l�N (18b)

then system (1) with w(k) = 0 is asymptotically stable via the
following static output feedback gain:

K = L1S
−1
11 . (19)
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Proof. From the structure of L, Sij and (10), (19), we can obtain

L = [KS11 0] = [K 0]
[
S11 0

S
ij
21 S

ij
22

]

= K[I 0]T −1
i TiSij = KC2iTiSij = KC2iSij ,

where Sij = TiSij . Substituting Sij for TiSij , KC2iSij for L in
(18a), then (18a) can be rewritten as follows:[

Qi − Sij − ST
ij ∗

ASij + B2jKC2iSij −Ql

]
< 0, 1� i, j, l�N

which implies that (12a) holds. Then, from Lemma 3, it fol-
lows that the system (3) with w(k)=0 is asymptotically stable.
Moreover, by replacing inequality (18a) with (18b), the corre-
sponding proof is easily obtained and omitted. �

Remark 3. In Theorem 1, two sufficient conditions are pro-
posed for robust static output feedback stabilizing controller
designs of linear discrete-time systems with time-invariant un-
certainties, and the design conditions are given in terms of solu-
tions to a set of LMIs, which can be effectively solved by using
LMI Control Toolbox [9]. If the variables Sij = S11, Qi = Q1,
Ti = T1, i, j = 1, . . . , N in Theorem 1, and the output matri-
ces C2i = C21 = [I 0], i = 1, . . . , N , then the condition (with
(12b)) of Theorem 1 reduces to the result in [18]. It should
be pointed out that the methods given in [5,22,13,16,18] are
also applicable for designing static output feedback stabilizing
controllers for the time-varying case when a single quadratic
Lyapunov function is exploited. The comparisons between the
above-mentioned methods and Theorem 1 are illustrated in
Section 4.

It should be noted that for each C2i , there may exist different
choices of Ti satisfying (10). The following theorem shows that
the feasibility of the conditions of Theorem 1 is independent
of the choices of Ti .

Theorem 2. If the condition of Theorem 1 is feasible for Ti

satisfying (10), then for each Vi satisfying (10), the condition
of Theorem 1 with Ti = Vi is also feasible.

Proof. Since both Ti and Vi satisfy (10),

C2iTi = C2iVi = [I 0]
which implies that

[I 0]T −1
i = [I 0]V −1

i . (20)

Post-multiplying both sides of (20) by Ti , then we have

[I 0] = [I 0]V −1
i Ti . (21)

Denote Wi =V −1
i Ti =

[
Wi

11 Wi
12

Wi
21 Wi

22

]
, then from (21), it follows

that Wi
11 = I, Wi

12 = 0.

Consider

TiSij = ViV
−1
i TiSij = ViWiSij

= Vi

[
I 0

Wi
21 Wi

22

] [
S11 0

S
ij
21 S

ij
22

]
= Vi

[
S11 0

S
ij
21 S

ij
22

]
, (22)

where

S
ij
21 = Wi

21S11 + Wi
22S

ij
21, S

ij
22 = Wi

22S
ij
22.

Let Sij =
[
S11 0

S
ij
21 S

ij
22

]
, then (22) can be rewritten as follows:

TiSij = ViSij . (23)

Therefore, if (13) holds for Ti , then we have[
Qi − ViSij − ST

ijV
T
i ∗

AiViSij + B2jL −Ql

]
< 0, 1� i, j, l�N ,

or

[
Qi − VjSij − ST

ijV
T
j ∗

AiVjSij + B2iL −Ql

]
< 0, 1� i, j, l�N ,

where Qi , L, and S11 satisfy the condition of Theorem 1.
It follows that the condition of Theorem 1 is feasible for
Ti = Vi . �

3.1.2. H2 and H∞ control
In this subsection, the results for robust static output feedback

stabilizing controller design are extended to the cases of H2
and H∞ control.

For the case of H2 control, we have

Theorem 3 (H2 performance). If there exist symmetric matri-
ces Qi , Zi , 1� i�N and matrices Sij , L, 1� i, j �N with

Sij =
[
S11 0

S
ij
21 S

ij
22

]
, L = [L1 0]

satisfying (24a) (or (24b)) and (25), (26)⎡
⎢⎣

Qi − TiSij − ST
ij T

T
i ∗ ∗

AiTiSij + B2jL −Ql ∗
C1iTiSij + D12jL 0 −I

⎤
⎥⎦< 0, 1� i, j, l�N ,

(24a)⎡
⎢⎣

Qi − Tj Sij − ST
ij T

T
j ∗ ∗

AiTj Sij + B2iL −Ql ∗
C1iTj Sij + D12iL 0 −I

⎤
⎥⎦< 0, 1� i, j, l�N ,

(24b)⎡
⎢⎣

−Zj ∗ ∗
B1i −Qj ∗
D11i 0 −I

⎤
⎥⎦< 0, 1� i, j �N , (25)

Tr(Zi) < �, 1� i�N , (26)

then the static output feedback control law (2) renders H2 norm
of system (3) less than

√
�, where

K = L1S
−1
11 .
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Proof. Let Sij = TiSij , Pi = Q−1
i , then using the technique of

Theorem 1, from (24a), we can obtain⎡
⎢⎣

−Pi ∗ ∗
Pl(Ai+B2jKC2i ) −Pl ∗
C1i+D12jKC2i 0 −I

⎤
⎥⎦<0, 1� i, j, l�N . (27)

Multiplying (27) by �i (k)�j (k)�l (k + 1) and summing them,
then we can have⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
N∑

i=1
�iPi ∗ ∗

(
N∑

l=1
�lPl

)(
N∑

i=1
�iAi

)
+
(

N∑
l=1

�lPl

)(
N∑

j=1
�jB2j

)
K

(
N∑

i=1
�iC2i

)
−

N∑
l=1

�lPl ∗
(

N∑
i=1

�iC1i

)
+
(

N∑
j=1

�jD12j

)
K

(
N∑

i=1
�iC2i

)
0 −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (28)

where �i = �i (k), �j = �j (k), �l = �l (k + 1).
Let P(�(k)) =∑N

i=1 �i (k)Pi , then (28) is same to (6).
On the other hand, pre- and post-multiplying (25) by⎡

⎢⎣
I 0 0

0 Pj 0

0 0 I

⎤
⎥⎦

and its transpose, it follows that⎡
⎢⎣

−Zj ∗ ∗
PjB1i −Pj ∗
D11i 0 −I

⎤
⎥⎦< 0, 1� i, j �N . (29)

Multiplying (29) by �i (k)�j (k+1) and summing them, then we
can obtain (7) with Z(�(k + 1))=∑N

i=1�i (k + 1)Zi . Similarly,
from (26), it follows that (5) holds. Then by virtue of Lemma
1, it further implies that H2 norm of system (1) is less than√

�. Moreover, by replacing inequality (24a) with (24b), the
corresponding proof is easily obtained and omitted. �

The following theorem presents sufficient conditions for
robust H∞ static output feedback controller designs.

Theorem 4 (H∞ performance). If there exist symmetric ma-
trices Qi , 1� i�N and matrices Sij , L, 1� i, j �N with

Sij =
[
S11 0

S
ij
21 S

ij
22

]
, L = [L1 0]

satisfying (30a) (or (30b))⎡
⎢⎢⎢⎢⎣

Qi − TiSij − ST
ij T

T
i ∗ ∗ ∗

0 −�I ∗ ∗
AiTiSij + B2jL B1i −Ql ∗

C1iTiSij + D12jL D11i 0 −�I

⎤
⎥⎥⎥⎥⎦< 0,

1� i, j, l�N , (30a)

⎡
⎢⎢⎢⎢⎣

Qi − Tj Sij − ST
ij T

T
j ∗ ∗ ∗

0 −�I ∗ ∗
AiTj Sij + B2iL B1i −Ql ∗

C1iTj Sij + D12iL D11i 0 −�I

⎤
⎥⎥⎥⎥⎦< 0,

1� i, j, l�N (30b)

then the static output feedback control law (2) renders H∞
norm of system (3) less than � where

K = L1S
−1
11 .

Proof. It can be completed by using Lemma 2 and the argu-
ments similar to those for Theorem 3, and the details are omit-
ted here. �

Remark 4. Similar to Theorem 2, the feasibility of the condi-
tions of Theorems 3 and 4 also is independent of the choices
of Ti . The proof is omitted here.

3.2. Case: B2i is of full rank

In this subsection, assume that B2i , 1� i�N , are of full
rank, and let invertible matrices Ui , 1� i�N , satisfy

UiB2i =
[
I

0

]
for 1� i�N (31)

and under the assumption, sufficient conditions for robust static
output feedback controller designs are presented.

Remark 5. For each B2i , the Ui satisfying (31) generally is not
unique. A special Ui can be obtained by the following formula:

Ui =
[
(BT

2iB2i )
−1BT

2i

HT
i

]
, (32)

where Hi denotes an orthogonal basis for the null space of BT
2i .

Similar to Lemma 3, and Theorems 1 and 2, the following
result is given.

Lemma 4. If there exist symmetric matrices Pi , 1� i�N and
matrices Rij , 1� i, j �N satisfying (33a) (or (33b))[ −Pi ∗

Rij (Ai + B2iKC2j ) Pl − Rij − RT
ij

]
< 0,

1� i, j, l�N . (33a)
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[ −Pi ∗
Rij (Ai + B2jKC2i ) Pl − Rij − RT

ij

]
< 0,

1� i, j, l�N (33b)

then system (3) with w(k)=0 is robustly stable via static output
feedback control law (2).

Proof. If (33a) holds, then

−Rij

(
N∑

l=1

�lPl

)−1

RT
ij �

N∑
l=1

�lPl − Rij − RT
ij . (34)

Multiplying (33a) by �l (k + 1) and summing them, then⎡
⎣ −Pi ∗

Rij (Ai + B2iKC2j )
N∑

l=1
�lPl − Rij − RT

ij

⎤
⎦< 0,

1� i, j �N . (35)

From (34) and (35), it follows that⎡
⎢⎣

−Pi ∗

Rij (Ai + B2iKC2j ) −Rij

(
N∑

l=1
�lPl

)−1

RT
ij

⎤
⎥⎦< 0,

1� i, j �N . (36)

Pre- and post-multiplying (36) by[
I 0

0 R−1
ij

]

and its transpose, then we have⎡
⎣ −Pi ∗

Ai + B2iKC2j −
(

N∑
l=1

�lPl

)−1

⎤
⎦< 0, 1� i, j �N .

(37)

Multiplying (37) by �i (k)�j (k), and summing them, then the
conclusion follows using the arguments similar to those in the
proof of Lemma 3. Moreover, by replacing inequality (33a)
with (33b), the corresponding proof is easily obtained and
omitted. �

Based on Lemma 4, we have

Theorem 5. If there exist symmetric matrices Pi , 1� i�N and
matrices Rij , M, 1� i, j �N with

Rij =
[

R11 R
ij
12

0 R
ij
22

]
, M =

[
M1

0

]

satisfying (38a) (or (38b))[ −Pi ∗
RijUiAi + MC2j Pl − RijUi − UT

i RT
ij

]
< 0,

1� i, j, l�N , (38a)

[ −Pi ∗
RijUjAi + MC2i Pl − RijUj − UT

j RT
ij

]
< 0,

1� i, j, l�N , (38b)

then system (1) with w(k) = 0 is asymptotically stable via the
following static output feedback gain:

K = R−1
11 M1.

Similar to Theorem 2, the following theorem shows that the
feasibility of the conditions of Theorem 5 is independent of the
choices of Ui .

Theorem 6. If the condition of Theorem 5 is feasible for Ui

satisfying (31), then for each Vi satisfying (31), the condition
of Theorem 5 with Ui = Vi is also feasible.

Proof. Since Ui and Vi satisfy (31),

UiB2i = ViB2i =
[
I

0

]

which implies that

UiV
−1
i

[
I

0

]
=
[
I

0

]
(39)

then UiV
−1
i =

[
I
0

•
•
]
, Consider

RijUi = RijUiV
−1
i Vi =

[
R11 R

ij
12

0 R
ij
22

][
I •
0 •

]

Vi =
[

R11 R
ij
12

0 R
ij
22

]
Vi = RijVi , (40)

where Rij =
[

R11
0

R
ij
12

R
ij
22

]
, the rest of the proof is similar to that

of Theorem 2, and the details are omitted here. �

4. Examples

Example 1. Consider system (1) which belongs to the
2-polytopic convex polyhedron with

A1 =
[1 + � 0

1 0.7

]
, A2 =

[1.3 −0.65

0.3 −0.9

]
,

B21 =
[1

1

]
, B22 =

[1.4

1

]
,

C21 = C22 = [1 0],
where ���∗. Since C21 =C22, the methods in [5,22,13,16,18],
and Theorems 1 and 5 are applicable for designing robust static
output feedback stabilizing controllers. Now applying these
methods to design robust static output feedback stabilizing con-
trollers such that �∗ is maximized. The obtained �∗ and cor-
responding static output feedback gains are shown in Table 1.



130 J. Dong, G.-H. Yang / Systems & Control Letters 57 (2008) 123–131

Table 1
�∗ and K

�∗ K

[5] Infeasible –
[22,13] 0.43 −0.5263
[16] 0.42 −0.5360
[18] 0.24 −0.5038
Theorem 1 with (18a) 0.23 −0.5067
Theorem 1 with (18b) 0.26 −0.4947
Theorem 5 with (38a) 0.53 −0.5366
Theorem 5 with (38b) 0.52 −0.5341

Table 2
�∗ and K

�∗ K

[16] 0.23 −0.9809
Theorem 1 with (18a) 0.40 −1.3336
Theorem 1 with (18b) 0.36 −1.2176
Theorem 5 with (38a) 0.33 −1.1161
Theorem 5 with (38b) 0.34 −1.2052

From Table 1, the computational results show that the methods
given by Theorems 1 and 5 can result in different designs, and
also justify that the condition of Theorem 1 with (18b) is less
conservative than the result in [18] (see Remark 3). And it can
be seen that Theorem 5 can give less conservative results than
other methods.

Example 2. Consider system (1) which belongs to the
2-polytopic convex polyhedron with

A1 =
[1.3 + � −1

0.2 0.6

]
, A2 =

[0.8 −1.5

0.1 0.3

]
,

B21 =
[ 1

0.2

]
, B22 =

[1

0

]
,

C21 = [1 1.5], C22 = [1 1],
where ���∗. Since C21 �= C22 and B21 �= B22, the methods
given in [5,22,13,18] are not applicable. But, the methods given
in [16], and Theorems 1 and 5 are applicable. Applying the
technique in [16], a state feedback gain K0=[−1.0392 1.1961]
is easily obtained in the first step, then using Theorem 4.1 in [16]
with Pi = P1, the maximal �∗ can be obtained as 0.23, and the
corresponding static output feedback gain is K =−0.9809. The
design results by using the method given in [16], and Theorems
1 and 5 are shown in Table 2.

From Table 2, it can be seen that the new methods can give
less conservative results.

Example 3. Consider system (1) which belongs to the
2-polytopic convex polyhedron with

A1 =
[1.6000 0

1.0000 0.7000

]
, A2 =

[1.1000 −0.3000

0 0.1000

]
,

Table 3
H2 performance index

Theorem 3 with (24a) Theorem 3 with (24b)

√
� 0.8226 0.8226

K −0.8629 −0.8631

Table 4
H∞ performance index

Theorem 4 with (30a) Theorem 4 with (30b)

� 1.6562 1.6559
K −0.9537 −0.9531

B11 =
[0.6000

0.3000

]
, B12 =

[0.5000

0.4000

]
,

B21 =
[1

1

]
, B22 =

[1.5000

1.0000

]
,

C11 = [1.0000 0.3000], C12 = [1.2000 0.5000],
C21 = [1.0000 − 0.1000], C22 = [1.0000 0.1000],
D111 = 0.5000, D122 = 0.6000, D121 = 1,

D122 = 0.9000.

By (11), we can obtain

T1 =
[ 0.9901 0.0995

−0.0990 0.9950

]
, T2 =

[0.9901 −0.0995

0.0990 0.9950

]
,

satisfying (10).
By using Theorems 3 and 4, the optimal H2 performance√
� and H∞ performance � as well as the corresponding static

output feedback gain K are obtained, and shown in Tables 3
and 4, respectively.

5. Conclusion

In this paper, the problem of designing robust static output
feedback controllers for linear discrete-time systems with time-
varying polytopic uncertainties has been studied. New sufficient
conditions for robust static output feedback stabilizing con-
troller designs are given in terms of solutions to a set of linear
matrix inequalities, and the results are extended to H2 and H∞
static output feedback controller designs. Numerical examples
have shown the effectiveness of the proposed design methods.
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